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Introduction 

Much of the theoretical work on elasticity has be& concerned with 
unfilled bodies, ranging from bhose with a high tensile and low elongation 
at break, such as metals, to those with a relatively low tensile and high 
elongation at  break, such as organic rubbers. In the analyses of the stress- 
strain data of highly filled systems, the infinitesimal theory of elasticity is 
used very frequently, although it has the inherent disrtdvantage that it is 
applicable for small strains only and that it was developed for homogeneous 
or unfilled bodies and not for heterogeneous or filled systems. In view of 
the large strains undergone by filled binders, in this investigation the con- 
cepts of the finite elastic theory were applied to these systems. Although 
this theory has been used by Rivlin’ to explain the mechanical behavior of 
binders, its application to filled binders is a new approach. This paper 
describes the results of a phenomenological study in the analysis of stress- 
strain data by means of the finite elastic theory. 

Theoretical Aspects 

Strain Invariants 
In the theory of finite elasticity three strain invariants are used that are 

independent of the coordinate axes and are functions of even powers of the 
principal elongation ratios: 

I1 = A12 + x22 + x 3 2  (1) 
I 2  = x12x22 -k x22x32 f x12xa2 (2) 
I3 = x12xZ2x32 (3) 

where the Xi are the principal extension ratios. 
For incompressible bodies, 1 3  = 1. It is well known that voids are 

formed on straining filled binders, so that the value of I3 will not be equal to 
unity and that Poisson’s ratio will not be equal to 0.5. 

If I3 = 1, then for uniaxial strain: 

XI = x (4) 
xz = A 3  = 1/x”* (5) 

1613 
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where X is the elongation ratio along the axis of strain. Substitution of 
eqs. (4) and (5)  into eqs. (1) and (2) shows that 

(6) 

and Z2 = 2X + 1/X2 (7) 

Zl = A 2  + 2/x 

In biaxial strain, in which a long specimen is extended in the direction of 
the shorter axis, so that the length is considered constant, X1 = X,Xz = 1, 
X3 = 1/X, so that 

(8) Zl = I2 = x 2  + 1/X* + 1 

Stored-Energ y Function 

In terms of the strain invariants, the stored-energy function W ,  or the 
energy of deformation per unit volume, is expressed by 

w = w(zl,Iz,zJ (9) 
Since W = 0 for the undeformed body (i.e., Xi = 1, so that Il = Zz = 3), a 
general expression of W for incompressible bodies, for which la = 1, will 
involve termsin (Il - 3) and ( 1 2  - 3), i.e., 

m m  

w = c c (II - 3)’(12 - 3)i 
i - 0  j - 0  

This expression reduces to the Mooney equation when i = 1, j = 0 and 
i = 0 , j  = 1: 

w = Cl(Z1 - 3) + CZ(Z2 - 3) (11) 

When C, = 0, eq. (11) reduces to the relationship given by the kinetic 
theory of elasticity. 

The stored-energy function per unit volume is determined by: 

w = S h i  .(Xi>& (12) 

where .(A,) is the stress. 

the experimental stress-strain curve. 
Hence, in the absence of voids, the value of W is given by the area under 

Experimental Procedure 
Uniaxial tensile testing was performed with standard Instron specimens 

with a gage length of 2.7 in. The biaxial specimens were 7 in. long, 0.25 
in. thick, and 0.5 in. in gage length. The instruments used were an Instron 
tensile tester (Model TTC) for low rates (crosshead speeds of 0.05 to 20 
in./&.) and an Alinco high-rate tester (Model 625A) for high rates (cross- 
head speeds of 500 to 5,000 in./min.). 

Data Analyses 
It was realized that voids are formed on straining filled binders, and that 

consequently the strain invariants and the stored-energy function would 
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have to be corrected to take volume changes into account. However, 
pseudostrain invariants were defined, which are expressed by the identical 
functions of X as the strain invariants when no volume changes take place, 
as given by eqs. (6) ,  (7), and (8). These pseudostrain invariants were 
designated as Qu, where the first subscript indicates the subscript of the I 
invariant to which it is related, and the second subscript indicates the type 
of strain, i.e., 1 for uniaxial and 2 for biaxlal. Hence, the defit ion of the 

in terms of the X’s for uniaxial strain are: 

and for biaxial strain: 

= Qn = X2 + 1/X2 + 1 (15) 

It may be noted that if volume changes are taken into account, SO that 

13”)  = V/V? # 1 (16) 

where V is the volume at a given strain level and Vo is the original volume, 
it follows from eqs. ( l ) ,  (2), and (3) that for uniaxial strain, 

I1 = X2 + (2/X)(V/VO) 

I1 = h2 + (l/X”(V/VO)~ + 1 

(17) 

(18) 

The value of V/Vo is essentially unity at small values of A, but increases 
with increasing A. However, the.co&cient of V/VO in uniaxial strain, or 
of (V/Vo)2 in biaxial strain, decreases as l / X  or as l / X 2 ,  respectively, so that 
the contribution of the volume correction term to the value of I, is not great 
even at high elongations; i.e., Q and I are practically equal unless large 
volume changes occur at low elongations. 

and for biaxial strain 

Application of Pseudostrain Invariants 

Values of the stored-energy function, assumed to be equal to the area un- 
der the stress-strain curve, were determined for both uniaxial and biaxial 
testing data covering a wide range of temperature strain rate and type of 
filled system. It was 
found that W was represented by the general equation 

The values of W were plotted against (Qil - 3). 

W = A [ l  - expt-B(Q, - 3 ) ) ]  (19) 

where A and B are constants. A is the value which W is approaching ex- 
ponentially and B is a measure of the rate of increase of W. A further &- 
cussion of the nature and role of these constants is presented below. Owing 
to the almost linear numerical relationship between Il and I2 in uniaxial 
strain, W is expressible by similar functions of QZ1 and Q1l. However, only 
the expression involving Q11 will be discussed, since at small extension ratios 
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or for small B values, it reduces to the equation given by the khetic theory 
of elasticity: 

W = AB(& - 3) (2% 
That is, W is a linear function of the pseudostrain invariants, which is 
identical to eq. (11) for CZ = 0. Such linear plots have been observed in 
this investigation. From the definition of W it follows that 

dW/& = .(A) (21) 
Substitution of eq. (19) into eq. (21) and expressing Qll in terms of A yields 
the uniaxial stress-strain equation 

(22) 

(23) 

.(A) = 2AB(A - 1/X2) exp ( -B(A2 + 2/h - 3)] 

.(A) = 2AB(A - l/Aa) exp { -B(A2 + l/h2 - 2)) 

whereas the biaxial stress-strain equation is given by 

The initial modulus for the uniaxial strain is obtained from eq. (22) : 

da(A)/dXlx,l = 6AB (24) 
These results are to be compared with those obtained from eq. ( l l ) ,  when 
C2 = 0, from which it follows that 

.(A) = 2c1 (A - 1/A2) (25) 

and d ~ ( A ) / d X l ~ , ~  = 6C1 

At small strains or small B values, eq. (22) becomes identical with eq. (25). 
Differentiation of eq. (23) shows that the initial modulus for biaxial 

strain is given by 

~ U ( A ) / ~ A I , , ~  = 8AB (27) 

When W is a linear function of Qrt, as in eq. (20), the slope is equal to AB, so 
that the modulus is equal to 6 times the slope in uniaxial strain and to 8 
times the slope in biaxial strain. 

At the maximum of the biaxial stress-strain curve 

B = h2 (Am4 + 3)/[2 (a4 - I)'] (28) 
At the maximum 

(29) 

where A, is the extension ratio at  the maximum stress. 
of the uniaxial curve 

B = A, (Ama + 2)/[2 (Ama - 1)2] 

When A >> 1, both eqs. (28) and (29) reduce to 

B = 1/2L2 (30) 

It is seen that A i i  is independent of A,  and dependent only on B. Con- 
versely, the value of B may be computed from A,,, and then substituted in 
eqs. (24) or (27) to solve for A. However, the value of B obtained by this 
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method ia not as accurate as that obtained by the method described below, 
since it is determined by a function involving only one specific value of 
X instead of those in the whole range of the stress-strain curve and, in ad- 
dition, this function is very sensitive to small  errors in &. 

Calculation of A and B 
The value of A was determined by trial and error, by choosing reasonable 

values of A and plotting log (1 - W/A) against (Q,, - 3) until the resub 
ing plot was linear. Generally, the value of A could be found in one or 
two trials. The value of B was calculated from the slope of this linear plot. 
In several graphs, small deviations from linearity were observed at very 
low elongations and also the semilog plots had an intercept, so that eq. (19) 
became 

W = A [ l  - Cexp (-B(Q, - 3)) l  (31) 

where C is the value of the intercept, generally ranging from 0.95 to 1.02. 
These intercepts are in many cases due probably to experimental errprs 
caused by slippage of the specimen in the Instron and to the fact that the 
area under the initial portion of the curve is small. In other cases, C de- 
viates from unity when the stress-strain curve has a very steep initial 
slope followed by a markedly different slope. The effect of C on eqs. (24) 
and (27) is to equate the computed modulus to 6ABC and 8ABC, respec- 
tively. 

Another method of computing these constants involves the use of the 
stress-strain equations, eqs. (22) or (23). For biaxial data, a plot of In u/ 
(A - l/Xa) vs. (Q12 - 3) would have a slope of -B and an intercept of In 
2AB, assuming C = 1. However, this plot is extremely sensitive to experi- 
mental errors in the initial portion of the graph, since small differences are 
involved in the denominator of the In term, so that too much weight is 
placed on the data a t  higher extensions. Therefore, this method of obMin- 
ing the constants A, B, and C is not as satisfactory as the method outlined 
previously. 

Typical graphs used in these computations are presented in Figures 1, 
2, and 3, which show, respectively, a typical biaxial stress-strain curve, 
the corresponding plot of W vs. (QI2 - 3), and the semilog plot of 

Discassion of Experimental R d t s  

(1 - W/A) VS. (& - 3). 

In Table I are presented the biaxial data of two filled binders, designated 
as systems I and 11, respectively. In order to compare the uniaxial and 
biaxial data of specimens obtained from the same batches, a 10 lb. mix of 
system 111, containing 59 wt.-% salt and 15% aluminum powder of 15p 
dia and a 10 lb. mix of system IV, containing 65 wt.-% glass beads of 
114 p dia aad 84 p dia were prepared. Both uniaxial and biaxial speci- 
mens were tested over a wide range of strain rate and temperature, i.e., 
0.1-10,OOO min.-' and &11O0F. for the biaxial tests, and 0.074-740 min.-' 
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and -40-11O0F. for the uniaxial tests. The resulting data are listed in 
Tables I1 and 111. 

Included in the tables are columns of the extension ratios at break, Ao, 
the work to break, W ,  (assuming incompressibility), the modulus calcu- 

strain, % 

Fig. 1. Biaxial stress-strain curve for salt-filled system 11. Test temperature llO"F., 
strain rate 20 min.-'. 

30- 

20 - 

I 

0 0.2 0.k 0.6 0.0 1.0 
I 
1.0 

Fig. 2. Plot of storedenergy function against &I* -3 for salt-lilled system 11. Test tem- 
perature llO°F., strain rate 20 min.-'. 
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0.4 I I I I I I 
0 0.2 0.4 0.6 0.0 1.0 

412-3 
Fig. 3. Graph for determination of constants A and B for saltrfilled system 11. Test tem- 

perature, llO”F., strain rate 20 min.-l. 

lated from the slope of the stress-strain curves, and the computed values 
of the constants A ,  B, and C. The slopes of the linear plots of W vs. 
[Ql, - 3) are given in the column “Linear slopes.” Values of the initial 
moduli El calculated by use of the constants A ,  B, C, or from the values 
under “Linear slopes” by means of eq. (24) or (27), are given in the last 
column. 

TABLE I 
Fkduced Biaxial StressStrain Data of Systems I and I1 

Temp., 
OF. el rnin.? k, wb, psi A , p &  B C WbIA 

System I 
20 20 2.82 913.10 1200 0.22 0.94 0.76 

40 1.62 322.10 450 1.18 0.94 0.72 
60 20 4.02 389.55 500 0.10 0.91 0.78 

40 5.31 649.50 800 0.056 0.88 0.81 
80 20 3.49 253.49 280 0.19 0.94 0.90 

40 3.30 243.04 300 0.17 0.95 0.81 
200 2.90 312.00 420 0.20 0.96 0.74 

1,OOO 2.50 375.58 500 0.29 0.91 0.75 

10,OOO 1.68 261.32 340 1.17 0.96 0.82 
110 20 2.50 128.15 180 0.28 0.97 0.71 

40 2.66 134.86 180 0.26 0.96 0.75 

2,000 1.80 288.48 350 0.80 0.96 0.80 

System I1 
40 40 1.83 131.91 220 0.53 0.96 0.60 
80 20 1.73 53.87 80 0.82 1.00 0.67 

40 1.84 67.82 100 0.65 1.00 0.68 
100 20 1.64 36.47 70 0.71 1.00 0.52 

40 1.61 44.27 80 0.82 1.00 0.55 
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TABLE I1 
Reduced StressStrain Data of System I11 

Temp., 6, Linear E 
O F .  min.-l A,, % W ,  E,  psi A B C Wb/A S I O ~ C  (calcd.) 

40 
40 
40 
80 
80 
80 
80 
80 
80 
80 
80 

110 
110 
110 

- 40 
80 
80 
80 

110 

Biaxial 
0 .1  12.9 6.34 994 12 
740 56 205 2941 260 

10,000 54 251 3500 350 
0.1 11.5 4.51 742 - 
0.1 8.5 3.29 1010 - 

10 11.0 8.53 1706 - 
10 10.7 7.50 1370 - 

740 32.0 92.5 4OOO 120 
2000 33.0 107.5 2900 200 
2000 28.0 108 5100 160 

10,000 36.0 133 3000 200 
0.1 9.6 4.6 1100 - 
0.1 9.52 4.1 1000 - 

10,OOO 58.0 125 1680 150 

Uniaxial 
740 9.26 106 55,000 130 

0.074 34.6 14.8 405 22 
7.4 26.9 28.5 1990 35 
740 35.2 67.5 3090 80 

0.074 12.6 6.9 948 - 

13.3 1.02 0.53 
1.8 1.00 0.79 
1.65 1.02 0.72 

- - -  
4.56 1.00 0.77 
2.37 1.00 0.54 
4.47 1.00 0.68 
2.88 1.03 0.67 

- - -  
1.80 1.02 0.83 

66.0 1.00 0.82 
3.72 1.00 0.67 
8.56 1.00 0.81 
5.68 1.00 0.84 

1300 
- 3740 
- 4710 
97.5 780 

127 1020 
199 1590 
189 1510 
- 4380 
- 3790 
- 5720 
- 4750 
137 1090 
124 992 
- 2200 

- 

- 51,000 
49 1 

- 1800 
- 2730 
157 942 

- 

TABLE I11 
Reduced Stress-Strain Data of System IV, Containing 65 vol& Glaes B~&I 

Lm- 
Temp., 6, ear E 

O F .  min.-l x b ,  % Fb E, psi A B C Wb/A slope (calcd.) 

40 
40 
40 
80 
80 
80 
80 
80 

110 
110 

-40 
40 
80 
80 
80 

110 

0.1 12.2 
740 22.0 

10,Ooo 22.0 
0.1 7.52 

10 7.83 
740 54.0 

2,000 28.0 
10,OOO 28.0 

0.1 6.12 
10,000 36.0 

740 7.41 
740 14.4 

0.074 14.3 
7.4 12.6 
740 20.0 

0.074 5.48 

4.00 
78.7 
86.8 
1.72 
3.30 
66.0 
85.5 
83.0 
1.06 
63.8 

116.6 
30.7 
3.07 
7.75 
23.8 
1.05 

Biaxial 
618 - - 

3650 - - 
4480 - - 

1450 - - 
852 2.5 53.3 

1070 80 1.85 
3740 120 4.84 
3200 120 4.68 

2640 80 3.69 
620 - - 

Uniaxial 
53,600 180 59.7 
6,100 40 24.7 

355 - - 
1930 10 32.5 
2430 30 13.9 
940 - - 

79.0 
481 
585 

145 

- -  
- -  
- -  

1.02 0.69 - 

1.00 0.83 - 
1.01 0.71 - 
1.02 0.69 - 

1.02 0.80 - 

- -  

78.6 - -  

1.02 0.65 - 
1.02 0.77 - 

- 60.4 - 
1.01 0.78 - 
1.00 0.80 - 

146 - -  

632 
3850 
4680 
1090 
1160 
1180 
4690 
4580 
629 

2410 

66,000 
6050 
362 

1970 
2490 
876 



STRESS-STRAIN BEHAVIOR 1621 

At a given temperature, the stored energy to break, wb, and A generally 
increase with increasing strain rate in both the uniaxial and biaxial tests. 
However, the biaxial data in Table I for system I at  80' show that both W 
and A go through a maximum owing to the relative values of low tensile and 
high elongations at  low strain rates, and high tensile and low elongations 
at  high strain rates. 

A few comments may be made about the effect of variations of test con- 
ditions on the value of wb. 

The data in Table I1 for system I11 show that at 80' at low strain rates 
the value of wb in biaxial strah is lower than that in Uniaxial strain, whereas 
at  a high strain rate the converse is true. At low strain rates the values of 
wb in biaxial tests are in a ratio of 0.3 to those in the uniaxial tests, whereas 
at  110' this ratio increases to approximately 0.7. For the glass bead-filled 
binder, system IV, (Table 111) these ratios are approximately 0.5 and 1, 
respectively. However, at  a strain rate of 740 min.-' at 80°, the values 
of wb and A for system I11 in biaxial tests are approximately 50% greater 
than those in the uniaxial test, whereas for system IV at  40 and 80°, the 
corresponding increases are about 170%. 

Failure Criterion 

An inspection of the values of wb and A in Tables 1-111 shows that, 
within experimental error, the ratio Wb/A,  also listed in the tables, is a con- 
stant whose value generally lies between 0.7 and 0.8, irrespective of the 
filled system, strain rate, and temperature, and which holds for both biaxial 
and uniaxial data. 

This constancy, wZlich is an important relationship in that it helps to 
define completely the stress-strain curve for a filled system (including a 
good prediction of the stress and strain at break), may also be deduced from 
other considerations and used for drawing further conclusions and useful 
correlations from the stress-strain data. 

For simplicity, a quantity k will be defined as 

It will now be shown that k, and hence Wb/A,  is indeed a constant for the 
available data. 

First the data will be discussed for which W is an exponential function 
of Q,,, i.e. the nonlinear data, and then the data for which W is a linear 
function of Q,,, i.e. the linear data. 

Failure in Biaxial Strain (Nonlinear Data) 

When W obeys eq. (19), i.e., is nonlinear, it follows from eqs. (19) and 

(33) 

(32) that 

xb = [ { 2 + k / B  + (4k/B + k2/B2)1/z )  /2]'/* 
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Two cases are of interest: 

( 1 )  When B < k, then B=k/(Xb2-2)  

(2)  When B >  k ,  then B = k/(hb2-1)* 
(34) 

(35) 
Equations (34) and (35) may also be derived from eqs. (19) and (32) assum- 
ing Xa to be large, and small, respectively. However, when B >> k, then 
ha = 1 ;  i.e., failure occurs a t  very low extensions. This conclusion also 
follows from the form of eq. (19). 

Failure in Uniaxial Strain (Nonlinear Data) 

At failure in uniaxial strain, hb is the solution of the equation 

Xb3 - (3  + k / B )  + 2 = 0 (36) 

i.e., ha = (2/3’/’)(3 + k/B)’/’ cos ( 4 / 3 )  (37) 

where cos 4 = - [3 / (3  + k/B)]”/’  (38) 
Again, as in the biaxial case, two limiting conditions may be considered: 
( 1 )  When B < k, it follows from eqs. (37) and (38) or from eq. (36) that 

A, = (3  + k/B)”’ (39) 
(2) When B > k, it follows, by expanding cos 4 in a Taylor’s series about 

‘K and then by expanding cos ( 4 / 3 )  about ~ / 3 ,  that 

X b  = 1 + (k/3B)’/’ (40) 
The same result is obtained from eq. (36) assuming Xa to be small. 

the corresponding biaxial solution. 
When B > > k,  then A, = 1 and the same comments apply as those for 

It should be noted that eqs. (34) and (39) are similar for hb >> 1 .  

Failure in  Biaxial and Uniaxial Strain (Linear Data) 

The relationships shown in eqs. (35) and (40) provide a method of in- 
cluding those data when W is a linear function &. If it is assumed that 
the constancy of W,/A  holds for these data, it follows from the values of 
wb and of the “Linear slope” column in Tables I1 and I11 that B > k 
for the linear data. 

Designating the value of the linear slope as s, and substituting for the 
value of A in the expression for s from eq. (20) shows that 

B = (1 - e-k)(s/Wb) 

haz = 1 + (k/l-e-k)’’z (wb/S)I ’ ’  

ib = 1 + [ 1 ~ / 3 ( 1 - e - ~ ) ] ’ / ’  ( W ~ / S ) I ”  

(41) 
Substitution of this expression for B in eq. (35) shows that for failure in 

biaxial strain 
(42) 

(43) 

while at failure in uniaxial strain, it follows from eqs. (40) and (41) that 
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In order to present the linear and nonlinear data for which B > k in a 
unified form-that is, without using the values of A and B of the nonlinear 
data to compute the values of s so that similar experimental data are used 
in treating the linear and nonlinear data-use is made of eqs. (24) and 
(27) to modify eqs. (43) and (42), respectively. It follows that for the 
biaxial data : 

ha2 = 1 + (k/l-e-k)l'z (8Wb/E)'/' 

hb = 1 -k (k/3(1-e-k))'/2 (6wb/E)"' 

(44) 

(45) 

while for the uniaxial data 

where E is Young's modulus obtained as the initial tangent of the stress- 
strain curve. 

Determination of k and Discussion of Results 

The above relationships, eqs. (34), (35), (39), (40), (44), and (45) suggest 
graphical methods of determining whether k is a constant in any of the 
above series and whether its value is independent of the series. For the 
purpose of determining the limits of B that determine the ranges in which 
these equations are applicable, k was chosen as 1.61, corresponding to a 
value of Wb/A of 0.8. (Other relationships, that involve only the stress a t  
break ub ,  ha, E and k, result from the combination of eqs. (32) and (19) 
with eqs. (22) and (24) for the uniaxial data, and with eqs. (23) and (27) 
for the biaxial data, respectively.) 

The following table summarizes the types of plots that were constructed, 
the corresponding figure numbers and the results. No data were available 
for use with eq. (39). 

Obsd. wb/A,  
Strees-strain data Fig. no. Plots S I O ~  slope calcd. 

Biaxial B < k 4 hae VB. 1/B k 1.52 0.78 
Biaxial B > k 5 hbs vs. l/B1/z k1/2 1.36 0.84 
Biaxial linear and 6 ha' vs. (8wb/E)l/' [k/(l - e-k)]1/2 1.42 0.80 

Uniaxial B > k 7 h, vs. l/B1/E (k/3)'lz 0 . 7 2  0.79 
Uniaxial linear and 8 X b  vs. (SW~/E) ' /~  [k/3(1 - e")]'" 0.77  0.73 

nonlinear 

nonlinear 

Inspection of Figures 4-8 shows that within experimental error good lin- 
When B > k ,  ha is small, so that experimental errors 

The points that have large deviations, 
earity is obtained. 
are quite important in these plots. 
also do not fall on a smooth curve of B vs. hb. 

Several conclusions may be reached from these data. 
(1) Since the plots are linear and the slopes are functions of k only as 

listed in the above table, the value of k is constant in all series. From the 
observed values of these slopes, k and hence, Wb/A were computed by 
means of eq. (32). As seen in the last column of the table, this ratio has 
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essentially a constant value of 0.8, which is independent of the type of strain! 
strain rate, ha, W,, or E. 

(2) These graphical methods provide an independent means of deter- 
mining Wb/A, as is shown in the following brief analysis. For the non- 
linear data, the plots showed that 

k = (By ha) (46) 

1 
9 
- 

Fig. 4. Determination of k from biaxial data when B < 1.61. 

2.0 t 
/ 

A System 111 
D System lT 

1.0 I I I I 
0 0.1 0.2 0.3 0.b 0.5 0.6 0.7 

-ik 
Fig. 5. Determination of k from biaxial data when B > 1.61. 
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2.0 

1.0 

1.6 C / 

A System XI1 Nonlinear 
4 system 111 Linear 
D S y s t e m  IV Nonlimar 
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Fig. 6. Determination of k from linear and nonlinear biaxial data when B > 1.61. 
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Fig. 7. Determination of k from uniaxial data when B > 1.61. 
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That is, k wa.s calculated from the set containing values of B and AB only. 
Since B can also be calculated from A,,,, it follows that 

k = (A,,,, (47) 

When k was computed from the plots with both the linear and nonlinear 
data, 

e 
f-i 

1.5 - 

1.b - 

1.3 - 

A Systsn I11 Nonlinear 

8 System IV Nonlinear 

1.2 - 
4 system 111 Linsu 

B system m Line- 

I 
0 0.1 0.2 0.3 0.h 0.5 0.6 0.7 

Systsn I11 Nonlinear 

System IV Nonlinear 
system 111 Linsu 

system m Line- 

(?)* 
Pig. 8. Determination of k from linear and nonlinear uniaxial data when B > 1.61. 

In contrast, the values of Wb/A as listed in Tables I, 11, and I11 were de- 
termined from the stress-strain data, so that by this method 

k = (.,A) (50) 

Hence, the data from which k is determined by these graphical methods are 
independent of the data used to compute directly the W,/A values, so that 
the graphical procedures provide an independent check on the value and 
constancy of Wb/A.  

(3) From a phenomenological point of view and the value of the con- 
stant ratio of Wb/A,  it may be concluded that A is the amount of energy 
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required to came an infinite elongation of the filled system, but the system 
is able to absorb only 80% of that energy before it fails. 

(4) The linear data are consistent with eq. (19) not only in that they 
represent the limiting case when & is small, but that they also appear to 
obey the same failure criterion. 

Hence, 
in terms of the proposed equation, the modulus may be considered to con- 
sist of two components: a strain component B and an energy component 
A .  

(6) Since A,,, and Ab are related by eqs. (28) and (33) in,biaxial strain, 
and by eqs. (29) and (37) in uniaxial strain, it follows that if failure occurs 
a t  A,, then for a given type of strain, this mode of failure will occur a t  the 
aame extension ratio in systems with the same k value. 

and for criticism of the manuscript. 

(6) The values of A, and Aa are dependent on B and not on A .  

Grateful acknowledgment is made to Dr. Keith H. Sweeny for many helpful discussions 
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1. Rivlin, R. 8.. Phil. Trans. Roy. SOC. London, Ser., A ,  241,379 (lY48). 

synopsis 
The result of a phenomenological study in the analysis of uniaxial and biaxial tensile 

behavior of a variety of filled ~ y ~ t e m ~  is described. A correlation is given that appears 
to serve as a tensile failure criterion for moat of the systems investigated. The stored- 
energy function W, assumed to be equal to the area under the stress-strain curve, has 
been found to obey the relation W = A( 1 - exp { -B(Q - 3)1), where A and B are con- 
stants and Q is related to the first or second strain invariant. In general, the total stored 
energy up to break, divided by A ,  has a value between 0.7 and 0.8, which appears to be 
independent of strain rate and temperature. This constancy has also been verified by 
an independent set of data. 

Cet article d6crit le rBsultat de 1‘6tude ph6nomBnologique dam l’analyse du comports 
ment B la traction uniaxiale et biaxiale d’une varibtk de systkmes contenant dea charges, 
et  une corrBlation qui semble servir de critAre B la caaaure sous tension pour la plupart 
dee systhmea dtudi6s. La fonction d’6nergie accumul6e, W ,  que l’on suppoae meaurBe 
par la surface comprise endessoua de la courbe tension-traction, obBit B la relation W = 
A( 1 - exp { -B(Q - 3)) ) oil A et B sont des constantes et  Q eat lib au premier ou second 
invariant de la tension. En gbn6ral 1’6nergie totale accumul6e jusqu’h la rupture, 
divi&e par A, p d d e  une valeur compriee entre 0.7 et 0.8 qui semble ne pas dependre 
de la vitesee de tension et de la temphture.  Cette constance a 6th vBrifi6e Bgalement 
par une drie de donn6ea indbpendante. 

Zuaammenfassung 

In der vorliegenden Mitteilung wird das Ergebnis einer phiinomenologischen Unter- 
suchung der Analyse des uniaxialen und biaxialen Zugverhaltens einter Reihe gefiillter 
Systeme und eine Korrelation als Zugbeanspruchbarkeitkriterium fur die meisten unter- 
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suchten Systeme beschrieben. Die Funktion fur die geapeicherte Energie, W, die der 
Flache unter der Spannunga-Dehnungakurve gleiche geaetzt wird, entapricht der Bezie- 
hung W = A (1 - exp( - B(& - 3))), wo A und B Komtante sind und & zurersten 
oder zweiten Verformungainvarianten in Beziehung steht. Im allgemeinen besitzt der 
Quotient am gespeicherter Gesamtenergie (bis sum Bruch) und A, scheinbar unabhiingig 
von Verformungsgeschwindigkeit und Temperatur, einen Wert zwischen 0,7 und 0,s. 
D i m  Komtanz wurde durch eine unabhlingige Reihe von Daten beatlitigt. 
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