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Introduction

Much of the theoretical work on elasticity has beén concerned with
unfilled bodies, ranging from those with a high tensile and low elongation
at break, such as metals, to those with a relatively low tensile and high
elongation at break, such as organic rubbers. In the analyses of the stress-
strain data of highly filled systems, the infinitesimal theory of elasticity is
used very frequently, although it has the inherent disadvantage that it is
applicable for small strains only and that it was developed for homogeneous
or unfilled bodies and not for heterogeneous or filled systems. In view of
the large strains undergone by filled binders, in this investigation the con-
cepts of the finite elastic theory were applied to these systems. Although
this theory has been used by Rivlin® to explain the mechanical behavior of
binders, its application to filled binders is a new approach. This paper
describes the results of a phenomenological study in the analysis of stress-
strain data by means of the finite elastic theory.

Theoretical Aspects

Strain Invariants

In the theory of finite elasticity three strain invariants are used that are
independent of the coordinate axes and are functions of even powers of the
principal elongation ratios:

Il = )\12 + A + As? (1)
12 = M2:? + NaBs? 4+ M2 (2)
Iy = M2\ 3)

where the )\, are the principal extension ratios.

For incompressible bodies, I; = 1. It is well known that voids are
formed on straining filled binders, so that the value of 7; will not be equal to
unity and that Poisson’s ratio will not be equal to 0.5.

If I; = 1, then for uniaxial strain:

A=A 4)
A=A = 1A/ (5)
1613
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where \ is the elongation ratio along the axis of strain. Substitution of
egs. (4) and (5) into egs. (1) and (2) shows that

I = 22+ 2/A (6)
and I = 2x + 1/A2 )

In biaxial strain, in which a long specimen is extended in the direction of
the shorter axis, so that the length is considered constant, \; = A\ = 1,
As = 1/A, so that

]

Il=Iz=)\2+ 1/)\2"“'1 (8)
Stored-Energy Function

In terms of the strain invariants, the stored-energy function W, or the
energy of deformation per unit volume, is expressed by

W = W15 )

Since W = 0 for the undeformed body (i.e., \; = 1,sothatI; = I, = 3),a
general expression of W for incompressible bodies, for which I; = 1, will
involve termsin (I; — 3) and (I3 — 3), i.e.,

W= 5 -9 - o (10)

This expression reduces to the Mooney equation when ¢ = 1,7 = 0 and
t=0,7=1:

W = Ci(Iy — 3) + Cy(I, — 3) (11)
When C; = 0, eq. (11) reduces to the relationship given by the kinetic
theory of elasticity.
The stored-energy function per unit volume is determined by:
W = f)\; a(A)d\, 12)

where o(\,) is the stress.
Hence, in the absence of voids, the value of W is given by the area under
the experimental stress-strain curve.

Experimental Procedure

Uniaxial tensile testing was performed with standard Instron specimens
with a gage length of 2.7 in. The biaxial specimens were 7 in. long, 0.25
in. thick, and 0.5 in. in gage length. The instruments used were an Instron
tensile tester (Model TTC) for low rates (crosshead speeds of 0.05 to 20
in./min.) and an Alinco high-rate tester (Model 625A) for high rates (cross-
head speeds of 500 to 5,000 in./min.).

Data Analyses

It was realized that voids are formed on straining filled binders, and that
consequently the strain invariants and the stored-energy function would
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have to be corrected to take volume changes into account. However,
pseudostrain invariants were defined, which are expressed by the identical
functions of A as the strain invariants when no volume changes take place,
as given by eqgs. (6), (7), and (8). These pseudostrain invariants were
designated as Q,,, where the first subscript indicates the subscript of the I
invariant to which it is related, and the second subscript indicates the type
of strain, i.e., 1 for uniaxial and 2 for biaxial. Hence, the definition of the
Qs in terms of the N’s for uniaxial strain are:

Qu = N + 2/\ (13)
Qun = 2\ + 1/X? (14)
and for biaxial strain:
Qu=0Qxn=NN+1/2+1 (15)
It may be noted that if volume changes are taken into account, so that
I/ = V/Va 1 (16)

where V is the volume at a given strain level and Vy is the original volume,
it follows from egs. (1), (2), and (3) that for uniaxial strain,

Iy =24 2/MN(V/Vo) (17

and for biaxial strain
Li=N+ 0/ V/ V) + 1 (18)

The value of V/V, is essentially unity at small values of A, but increases
with increasing A. However, the coefficient of V/V, in uniaxial strain, or
of (V/V,)?in biaxial strain, decreases as 1/A or as 1/A?, respectively, so that
the contribution of the volume correction term to the value of I is not great
even at high elongations; i.e., Q and I are practically equal unless large
volume changes occur at low elongations.

Application of PseudoStrain Invariants

Values of the stored-energy function, assumed to be equal to the area un-
der the stress-strain curve, were determined for both uniaxial and biaxial
testing data covering a wide range of temperature strain rate and type of
filled system. The values of W were plotted against (@,; — 3). It was
found that W was represented by the general equation

W = AQl — exp{—B(Q, — 3)}] (19)

where A and B are constants. A is the value which W is approaching ex-
ponentially and B is a measure of the rate of increase of W. A further dis-
cussion of the nature and role of these constants is presented below. Owing
to the almost linear numerical relationship between I; and I, in uniaxial
strain, W is expressible by similar functions of Q;; and @,;. However, only
the expression involving @y, will be discussed, since at small extension ratios
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or for small B values, it reduces to the equation given by the kirietic theory
of elasticity:

W = AB(Q:; — 3) (20)

That is, W is a linear function of the pseudostrain invariants, which is
identical to eq. (11) for C, = 0. Such linear plots have been observed in
this investigation. From the definition of W it follows that

dW/d\ = a(d) (21)

Substitution of eq. (19) into eq. (21) and expressing Q;; in terms of A yields
the uniaxial stress-strain equation

o(\) = 2AB(\ — 1/2?) exp {—B(\* + 2/A — 3)} (22)
whereas the biaxial stress-strain equation is given by
a(d) = 24B(A — 1/A%) exp {—B(\? + 1/t — 2)} (23)
The initial modulus for the uniaxial strain is obtained from eq. (22):
do(\)/dN|y=1 = 64B (24)

These results are to be compared with those obtained from eq. (11), when
C» = 0, from which it follows that

o) = 2C: (A — 1/A?) (25)
and  do(\)/dA|y=; = 6C:

At small strains or small B values, eq. (22) becomes identical with eq. (25).

Differentiation of eq. (23) shows that the initial modulus for biaxial
strain is given by

do(\)/dNx=1 = 84B 27)

When W is a linear function of @, as in eq. (20), the slope is equal to AB, so

that the modulus is equal to 6 times the slope in uniaxial strain and to 8

times the slope in biaxial strain.
At the maximum of the biaxial stress-strain curve

B =22 (At + 3)/12 (At — 1)2] (28)

where )\, is the extension ratio at the maximum stress. At the maximum
of the uniaxial curve

B =X, 2+ 2)/12 (A2 — 1)2] (29)
When A >> 1, both egs. (28) and (29) reduce to
B = 1/2)\,2 (30)

It is seen that Aii is independent of 4, and dependent only on B. Con-
versely, the value of B may be computed from A,, and then supstituted in
egs. (24) or (27) to solve for A. However, the value of B obtained by this
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method is not as accurate as that obtained by the method described below,
since it is determined by a function involving only one specific value of
\ instead of those in the whole range of the stress-strain curve and, in ad-
dition, this function is very sensitive to small errors in .

Calculation of A and B

The value of A was determined by trial and error, by choosing reasonable
values of 4 and plotting log (1 — W/A) against (Q,; — 3) until the result-
ing plot was linear. Generally, the value of A could be found in one or
two trials. The value of B was calculated from the slope of this linear plot.
In several graphs, small deviations from linearity were observed at very
low elongations and also the semilog plots had an intercept, so that eq. (19)
became

W = Al — Cexp {—B(Qy — 3)}] (31)

where C is the value of the intercept, generally ranging from 0.95 to 1.02.
These intercepts are in many cases due probably to experimental errors
caused by slippage of the specimen in the Instron and to the fact that the
area under the initial portion of the curve is small. In other cases, C de-
viates from unity when the stress-strain curve has a very steep initial
slope followed by a markedly different slope. The effect of C on egs. (24)
and (27) is to equate the computed modulus to 64 BC and 84 BC, respec-
tively.

Another method of computing these constants involves the use of the
stress-strain equations, eqs. (22) or (23). For biaxial data, a plot of In o/
(A — 1/A%) vs. (@2 — 3) would have a slope of —B and an intercept of In
2A B, assuming C = 1. However, this plot is extremely sensitive to experi-
mental errors in the initial portion of the graph, since small differences are
involved in the denominator of the In term, so that too much weight is
placed on the data at higher extensions. Therefore, this method of obtgin-
ing the constants A, B, and C is not as satisfactory as the method outlined
previously.

Typical graphs used in these computations are presented in Figures 1,
2, and 3, which show, respectively, a typical biaxial stress-strain curve,
the corresponding plot of W vs. (@i — 3), and the semilog plot of
(1 — W/A) vs. (Qu — 3).

Discussion of Experimental Results

In Table I are presented the biaxial data of two filled binders, designated
as systems I and II, respectively. In order to compare the uniaxial and
biaxial data of specimens obtained from the same batches, a 10 1b. mix of
system III, containing 59 wt.-%, salt and 159, aluminum powder of 15u
dia and a 10 lb. mix of system IV, containing 65 wt.-9, glass beads of
114 u dia and 84 p dia were prepared. Both uniaxial and biaxial speci-
mens were tested over a wide range of strain rate and temperature, i.e.,
0.1-10,000 min. ! and 40-110°F. for the biaxial tests, and 0.074-740 min.’
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and —40-110°F. for the uniaxial tests. The resulting data are listed in
Tables IT and II1.

Included in the tables are columns of the extension ratios at break, ),
the work to break, W, (assuming incompressibility), the modulus calcu-
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Fig. 1. Biaxial stress-strain curve for salt-filled system II. Test temperature 110°F.,
strain rate 20 min. ~..
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Fig. 2. Plot of stored-energy function against Q:; —3 for salt-filled system II. Test tem-
perature 110°F., strain rate 20 min. 1.
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Fig. 3. Graph for determination of constants A and B for salt-filled system IT. Test tem-
perature, 110°F., strain rate 20 min. %

lated from the slope of the stress-strain curves, and the computed values
of the constants A, B, and C. The slopes of the linear plots of W vs.
(@1, — 3) are given in the column “Linear slopes.”” Values of the initial
moduli E, calculated by use of the constants 4, B, C, or from the values
under “Linear slopes’” by means of eq. (24) or (27), are given in the last
column.

TABLE 1
Reduced Biaxial Stress-Strain Data of Systems I and II
Temp.,

°F. e min.”l ) Wy, psi A, psi B C w,/A

System 1
20 20 2.82 913.10 1200 0.22 0.94 0.76
40 1.62 322.10 450 1.18 0.94 0.72
60 20 4.02 389.55 500 0.10 0.91 0.78
40 5.31 649.50 800 0.056 0.88 0.81
80 20 3.49 253 .49 280 0.19 0.94 0.90
40 3.30 243.04 300 0.17 0.95 0.81
200 2.90 312.00 420 0.20 0.96 0.74
1,000 2.50 375.58 500 0.29 0.91 0.75
2,000 1.80 288.48 350 0.80 0.96 0.80
10,000 1.68 261.32 340 1.17 0.96 0.82
110 20 2.50 128.15 180 0.28 0.97 0.71
40 2.66 134.86 180 0.26 0.96 0.75

System II
40 40 1.83 131.91 220 0.53 0.96 0.60
80 20 1.73 53.87 80 0.82 1.00 0.67
. 40 1.84 67.82 100 0.65 1.00 0.68
100 20 1.64 36.47 70 0.71 1.00 0.52
40 1.61 44.27 80 0.82 1.00 0.55
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TABLE II
Reduced Stress-Strain Data of System IIT

Temp., &, Linear E
°F. min."? N\, % W, E,psi A B C W,/A slope (ecaled.)

Biaxial
40 0.1 12.9 6.34 994 12 13.3 1.02 0.53 — 1300
40 740 56 205 2941 260 1.8 1.00 0.79 — 3740
40 10,000 54 251 3500 350 1.65 1.02 0.72 — 4710
80 0.1 11.5 4.51 742 — —_ — — 97.5 780
80 0.1 85 3.29 1010 — — — — 127 1020
80 10 11.0 8.53 1705 — —_ — — 199 1590
80 10 10.7 7.50 1370 — — — — 189 1510
80 740 32.Q 92.5 4000 120 4.56 1.00 0.77 —_ 4380
80 2000 33.0 107.5 2900 200 2.37 1.00 0.54 — 3790
80 2000 28.0 108 5100 160 4.47 1.00 0.68 — 5720
80 10,000 36.0 133 3000 200 2.88 1.03 0.67 — 4750
110 0.1 9.6 4.6 1100 — — — — 137 1090
110 0.1 9.52 4.1 1000 — — — — 124 992
110 10,000 58.0 125 1680 150 1.80 1.02 0.83 — 2200
Uniaxial
—40 740 9.26 106 55,000 130 66.0 1.00 0.82 — 51,000
80 0.074 34.6 14.8 405 22 3.72 1.00 0.67 — 491
80 7.4 26.9 28.5 1990 35 8.56 1.00 0.81 — 1800
80 740 35.2 67.5 3090 8 568 1.00 0.84 — 2730
110 0.074 12.6 6.9 948 — — — — 157 942
TABLE III
Reduced Stress-Strain Data of System IV, Containing 65 vol.-%, Glass Begds
Lin-
Temp., & ear E
°F. min."! N\, % W, E,psi A B C W,/A slope (caled.)
Biaxial
40 0.1 12.2 4.00 618 — — — — 79.0 632
40 740 22.0 78.7 3650 — —_ — — 481 3850
40 10,000 22.0 86.8 4480 — @ — — —_— 585 4680
80 0.1 7.52 1.72 852 2.5 53.3 1.02 0.69 — 1090
80 10 7.83 3.30 1450 — — —_ —_ 145 1160
80 740 54.0 66.0 1070 80 1.85 1.00 0.83 — 1180
{0 2,000 28.0 85.5 3740 120 4.8 1.01 0.71 — 4690
80 10,000 28.0 83.0 3200 120 4.68 1.02 0.69 — 4580
110 0.1 6.12 1.06 620 — —_— —_ — 78.6 629
110 10,000 36.0 63.8 2640 80 3.69 1.02 0.80 — 2410
Uniaxial
—40 740 7.41 116.6 53,600 180 59.7 1.02 0.65 — 66,000
40 740 14.4 30.7 6,100 40 24.7 1.02 0.77 — 6050
80 0.074 14.3 3.07 385 — — - -—  60.4 362
80 7.4 12.6 17.75 1930 10 32.5 1.01 0.78 — 1970
80 740 20.0 23.8 2430 30 13.9 1.00 0.80 — 2490
110 0.074 548 1.05 940 — —_ —_ —_ 146 876
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At a given temperature, the stored energy to break, W,, and A generally
increase with increasing strain rate in both the uniaxial and biaxial tests.
However, the biaxial data in Table I for system I at 80° show that both W
and A go through a maximum owing to the relative values of low tensile and
high elongations at low strain rates, and high tensile and low elongations
at high strain rates.

A few comments may be made about the effect of variations of test con-
ditions on the value of W,.

The data in Table II for system III show that at 80° at low strain rates
the value of W, in biaxial strain is lower than that in uniaxial strain, whereas
at a high strain rate the converse is true. At low strain rates the values of
W, in biaxial tests are in a ratio of 0.3 to those in the uniaxial tests, whereas
at 110° this ratio increases to approximately 0.7. For the glass bead-filled
binder, system IV, (Table IIT) these ratios are approximately 0.5 and 1,
respectively. However, at a strain rate of 740 min.—! at 80°, the values
of W, and A for system III in biaxial tests are approximately 509, greater
than those in the uniaxial test, whereas for system IV at 40 and 80°, the
corresponding increases are about 1709,. ‘

Failure Criterion

An inspection of the values of W, and A in Tables I-1II shows that,
within experimental error, the ratio W,/ A, also listed in the tables, is a con-
stant whose value generally lies between 0.7 and 0.8, irrespective of the
filled system, strain rate, and temperature, and which holds for both biaxial
and uniaxial data. '

This constancy, which is an important relationship in that it helps to
define completely the stress-strain curve for a filled system (including a
good prediction of the stress and strain at break), may also be deduced from
other considerations and used for drawing further conclusions and useful
correlations from the stress-strain data.

For simplicity, a quantity &k will be defined as

= —In (1 — W,/A) (32)

It will now be shown that &, and hence W,/ A, is indeed a constant for the
available data.

First the data will be discussed for which W is an exponential function
of @, i.e. the nonlinear data, and then the data for which W is a linear
function of @y, i.e. the linear data.

Failure in Biazial Strain (Nonlinear Data)

~ When W obeys eq. (19), i.e., is nonlinear, it follows from egs. (19) and
(32) that

N = [{2 + k/B + (4k/B + k?/B»'/*} /217 (33)
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Two cases are of interest:
(1) When B < k, then B=k/(\,2—2) (34)
(2) When B > k, then B =~ k/(\,2—1)?2 (35)

Equations (34) and (35) may also be derived from egs. (19) and (32) assum-
ing A, to be large, and small, respectively. However, when B >> k, then
A = 1; lie., failure occurs at very low extensions. This conclusion also
follows from the form of eq. (19).

Failure in Uniaxial Strain (Nonlinear Data)

At failure in uniaxial strain, A, is the solution of the equation

M—MNB+k/B) +2=0 - (36)
ie., N = (2/37)(3 + k/B)"* cos (¢/3) (37)
where cos¢ = — [3/(3+ k/B)I" (38)

Again, as in the biaxial case, two limiting conditions may be considered:
(1) When B < k, it follows from eqs. (37) and (38) or from eq. (36) that

» =~ (3 + k/B)” ~ (39)

(2) When B > £k, it follows, by expanding cos ¢ in a Taylor’s series about
= and then by expanding cos (¢/3) about x/3, that

» = 1+ (k/3B)" (40)

The same result is obtained from eq. (36) assuming A, to be small.

When B >> k, then A\, = 1 and the same comments apply as those for
the corresponding biaxial solution.

It should be noted that eqgs. (34) and (39) are similar for A, >> 1.

Failure in Biazial and Uniaxial Strain (Linear Data)

The relationships shown in egs. (35) and (40) provide a method of in-
cluding those data when W is a linear function @;;. If it is assumed that
the constancy of W,/A holds for these data, it follows from the values of
W, and of the “Linear slope” column in Tables II and III that B > k&
for the linear data.

Designating the value of the linear slope as s, and substituting for the
value of A in the expression for s from eq. (20) shows that

B = (1 — e~%)(s/W,) (41)

Substitution of this expression for B in eq. (35) shows that for failure in
biaxial strain

M =14+ (k/1—e~%7 (W,/s)" (42)
while at failure in uniaxial strain, it follows from eqs. (40) and (41) that

N =1+ [k/3(1—e"5)1 (Wy/s)'” (43)
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In order to present the linear and nonlinear data for which B > k in a
unified form—that is, without using the values of A and B of the nonlinear
data to compute the values of s so that similar experimental data are used
in treating the linear and nonlinear data—use is made of eqgs. (24) and
(27) to modify eqs. (43) and (42), respectively. It follows that for the
biaxial data:

M =1+ (k/1—e™ %)/ (8W,/E)" (44)
while for the uniaxial data
N =14 (k/3(1—e™9)"* (6W,/E)" (45)

where E is Young’s modulus obtained as the initial tangent of the stress-
strain curve.

Determination of k and Discussion of Resulls

The above relationships, egs. (34), (35), (39), (40), (44), and (45) suggest
graphical methods of determining whether % is a constant in any of the
above series and whether its value is independent of the series. For the
purpose of determining the limits of B that determine the ranges in which
these equations are applicable, k¥ was chosen as 1.61, corresponding to a
value of W,/A of 0.8. (Other relationships, that involve only the stress at
break a,, A\s, E and k, result from the combination of egs. (32) and (19)
with eqs. (22) and (24) for the uniaxial data, and with eqs. (23) and (27)
for the biaxial data, respectively.)

The following table summarizes the types of plots that were constructed,
the corresponding figure numbers and the results. No data were available
for use with eq. (39).

Obsd. Wi/A,
Stress-strain data Fig. no. Plots Slope slope  caled.
Biaxial B <k 4  MN?vs.1/B k 1.52 0.78
Biaxial B > k 5  N\dvs. 1/BY/: k'’ 1.36 0.84
Biaxial linear and 6  MNlvs. BW,/E)'/r [k/(1 —eM]/2 1.42 0.8

nonlinear
Uniaxial B > k 7 A vs.1/B'Y2 (k/3)7 0.72 0.79
Uniaxial linear and 8 N ve. (6W,/E)/*  [k/3(1 — e™™)]/2 0.77 0.73
nonlinear

Inspection of Figures 4-8 shows that within experimental error good lin-
earity is obtained. When B > k, A\, is small, so that experimental errors
are quite important in these plots. The points that have large deviations,
also do not fall on a smooth curve of B vs. \,.

Several conclusions may be reached from these data.

(1) Since the plots are linear and the slopes are functions of & only as
listed in the above table, the value of k is constant in all series. From the
observed values of these slopes, k¥ and hence, W,/A were computed by
means of eq. (32). As seen in the last column of the table, this ratio has
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essentially a constant value of 0.8, which is independent of the type of strain,
strain rate, \,, W,, or E.

(2) These graphical methods provide an independent means of deter-
mining W,/A, as is shown in the following brief analysis. For the non-
linear data, the plots showed that

k= (B,N) (46)
ho | —
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Fig. 4. Determination of k from biaxial data when B < 1.61.
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Fig. 5. Determination of k& from biaxial data. when B > 1.61.
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Fig. 7. Determination of k¥ from uniaxial data when B > 1.61.
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That is, k was calculated from the set containing values of B and A, only.
Since B can also be calculated from ), it follows that

k = ()‘m, )‘b) (47)

When k was computed from the plots with both the linear and nonlinear
data,

k = (W, E, \y) (48)
and
k = (o'b: E) )‘b) (49)
105 —
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(6%5

Fig. 8. Determination of % from linear and nonlinear uniaxial data when B > 1.61.

In contrast, the values of W,/A as listed in Tables I, II, and I1I were de-
termined from the stress-strain data, so that by this method

k= (o) (50)

Hence, the data from which k is determined by these graphical methods are
independent of the data used to compute directly the W,/ A values, so that
the graphical procedures provide an independent check on the value and
constancy of W,/A.

(3) From a phenomenological point of view and the value of the con-
stant ratio of W,/A, it may be concluded that 4 is the amount of energy
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required to cause an infinite elongation of the filled system, but the system
is able to absorb only 809, of that energy before it fails.

(4) The linear data are consistent with eq. (19) not only in that they
represent the limiting case when ), is small, but that they also appear to
obey the same failure criterion.

(6) The values of \,, and ), are dependent on B and noton A. Hence,
in terms of the proposed equation, the modulus may be considered to con-
sist of two components: a strain component B and an energy component
A.

(6) Since ), and A\, are related by egs. (28) and (33) in biaxial strain,
and by egs. (29) and (37) in uniaxial strain, it follows that if failure occurs
at Ay, then for a given type of strain, this mode of failure will occur at the
same extension ratio in systems with the same % value.

Grateful acknowledgment is made to Dr. Keith H. Sweeny for many helpful discussions
and for criticism of the manuscript.
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Synopsis

The result of a phenomenological study in the analysis of uniaxial and biaxial tensile
behavior of a variety of filled systems is described. A correlation is given that appears
to serve as a tensile failure criterion for most of the systems investigated. The stored-
energy function W, assumed to be equal to the area under the stress-strain curve, has
been found to obey the relation W = A(1 — exp {—B(@ — 3)}), where A and B are con-
stants and Q is related to the first or second strain invariant. In general, the total stored
energy up to break, divided by A, has a value between 0.7 and 0.8, which appears to be
independent of strain rate and temperature. This constancy has also been verified by
an independent set of data.

Résumé

Cet article décrit le résultat de 1’étude phénoménologique dans ’analyse du comporte-
ment & la traction uniaxiale et biaxiale d’une variété de systémes contenant des charges,
et une corrélation qui semble servir de critére & la cassure sous tension pour la plupart
des systtmes étudiés. La fonction d’énergie accumulée, W, que I'on suppose mesurée
par la surface comprise endessous de la courbe tension-traction, obéit a la relation W =
A(l — exp{ —B(Q — 3)} ) ol A et B sont des constantes et Q est 1ié au premier ou second
invariant de la tension. En général 'énergie totale accumulée jusqu’a la rupture,
divisée par A, posséde une valeur comprise entre 0.7 et 0.8 qui semble ne pas dépendre
de la vitesge de tension et de la température. Cette constance a 6té vérifiée également
par une série de données indépendante.

Zusammenfassung

In der vorliegenden Mitteilung wird das Ergebnis einer phinomenologischen Unter-
suchung der Analyse des uniaxialen und biaxialen Zugverhaltens einter Reihe gefiillter
Systeme und eine Korrelation als Zugbeanspruchbarkeitskriterium fiir die meisten unter-
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suchten Systeme beschrieben. Die Funktion fiir die gespeicherte Energie, W, die der
Fliche unter der Spannungs-Dehnungskurve gleiche gesetzt wird, entspricht der Bezie-
hung W = A (1 — exp{— B(Q — 3)}), wo 4 und B Konstante gind und Q zur ersten
oder zweiten Verformungsinvarianten in Beziehung steht. Im allgemeinen besitzt der
Quotient aus gespeicherter Gesamtenergie (bis zum Bruch) und A4, scheinbar unabhingig
von Verformungsgeschwindigkeit und Temperatur, einen Wert zwischen 0,7 und 0,8.
Diese Konstanz wurde durch eine unabhingige Reihe von Daten bestitigt.
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